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The ionic transport through charged membranes has been often described in terms of 
NernsttPlanck and Poisson equations. The intrinsic nonlinearity of the mentioned equation 
system poses certain problems not always satisfactorily solved. We propose here a tinite- 
difference numerical method for the solution of the steady state transport across charged 
membranes when an electric current density and a convective flux are involved. The method is 
capable of dealing with an arbitrary number of ionic species of any charge number. The 
numerical stability and the ease and flexibility for introducing the boundary conditions in the 
equation system, are some of the main features of the algorithm. ‘g’ 1988 Academic Press. inc. 

When studying the ionic transport processes across liquid junctions and mem- 
branes, the macroscopic model based on Nernst-Planck flux equations and the 
electrostatic Poisson’s equation is one of the most widely used [ 1, 21. It was Planck 
[3,4] who first suggested that the transport of charged matter could be desc 
by an equation system containing so many Nernst-Planck (NP) flux equatio 
ionic species involved, in addition to another equation relating the local differences 
in the concentration of ions with the electric potential common to all NP equations. 
The latter expression is the Poisson equation of electrostatics. The NP equati 
were originally worked out from a given kinetic model of diffusion, though t 
may be regarded as an approximation to the (exact) nonequilibrium thermo- 
dynamics equations [ 51. 

Despite the fact that NP equations account for the essential physical membrane 
phenomena, it is rather surprising how such a simple equation has such great 
propularity in different fields as the transport in semiconductors and electrolyie 
solutions, the metal-electrolyte interfacial kinetics, etc. [6]. 

Since its formulation, NP equations have generated large amounts of literature 
concerning the problem of its solution. While in their original formulation [3,4], 
NP equations included a small number of parameters, further extensions of the 
equations to cover ionic transport through membranes have demanded the 
introduction of certain refinements [2]. According to this, the early proposed 
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equations for the description of nonconvective transport through solution layers 
have turned out to be a complex equation system. 

In order to solve NP equations, two hypotheses have been often used, namely the 
“electroneutrality” and the “constant electric field” assumptions. The mentioned 
approximations permit us to reach a closed solution of the problem in some (sim- 
ple) cases (not allowing for a nonzero convective flux, or with restrictive conditions 
in the number of ions considered, for example). The need of an exact general 
solution for ionic transport problems and the study of the significance and 
applicability limits of the abovementioned assumptions may be, perhaps, some of 
the reasons why several authors have tackled with this problem numerically 
[6-lo]. In addition, there are some situations that demand an exact integration of 
NP equations. The study of the space charge density over the diffusion zone [7], is 
one of these problems. 

When solving the NP and Poisson equation system in the context of a given 
membrane system, there are four problems stating the need for a numerical method. 
These are as follows: 

(1) The intrinsic nonlinearity of the problem. This fact comes from Poisson’s 
equation as well as from the second term of the NP equation. 

(2) The need of dealing with multiionic systems without introducing restric- 
tive approximations on the charge numbers. 

(3) The problem of considering simultaneously three mechanisms of trans- 
port: diffusion, convection, and electric conduction. 

(4) The complexity that arises from considering a “membrane” composed of 
a charged membrane and two unstirred layers of finite thicknesses adhered to both 
membrane surfaces (these layers exert some effects on the process of transport [ 11). 

Bearing in mind (l)-(4), it seems clear that even introducing the electroneutrality 
assumption, a general solution of the problem dealt with here calls for numerical 
procedures. The numerical algorithm employed is a “finite-difference” method 
including refinements in distance scaling. The finite-difference scheme previously 
worked out by French [11] paved the way for the numerical treatment to come. 

FORMULATION OF THE PROBLEM 

The steady state electrodiffusion equations ruling the ionic transport across a 
membrane are four. First, we have the NP equation (in diluted solution form) 

Ji= -bi (. 
g&g 

> 
+&F, i = 1, 2 )...) n, (1) 

where Ji, Di, Ci, and zi stand for the flux, the diffusion coefficient, the molar concen- 
tration, and the charge number of ion i, respectively; x is the position along the 



IONIC TRANSPORT ACROSS MEMBRANES 3 

diffusion zone (X runs from X =0 to .U = d, being d the diffusion zone thickness). 
4 denotes the electric potential, V is the convection, and n is the number of ions. 
Constants F, R, T have their usual meaning. 

Equations (1) are restricted by the so-called continuity equations 

dJi 
x=0, i = 1, 2 )...) n - I. 

On the other hand, Poisson’s equation connects 6 with ionic concentrations Si. EE 
reads 

E being the dielectric constant of the medium. X is the fixed charge concentration in 
the membrane phase, o being the sign of this charge. In addition, ionic fluxes are 
coupled by means of the equation for the electric current density 1, 

Equations (l)-(4) assume an unidimensional transport problem. These equations 
may be written down in dimensionless form using the following transformations 

where C,, 6,, and r, are suitable scaling factors for the concentration, the diffusion 
coefficient and the distance, respectively. With the new dimensionless parameters, 
Eqs. (l)-(4) can be rewritten as 

Ji= -Di(~+Cizi$!)+ciO, i=l,2,...,n 

dJ, 
;i;;‘O> (14) 
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I= c ziJir 

where c( is a dimensionless constant, given by the expression 

(15) 

(16) 

(17) 

Consider a simple membrane system conceptually similar to that of a constrained 
diffusion junction [l] of thickness d (see Fig. 1). The membrane is regarded to be 
porous and free from fixed charge. In addition, the membrane is flanked by two 
electrolyte solutions at different concentration. Both solutions are artificially main- 
tained homogeneous by means of a suitable experimental setup. 

Our aim is solving Eqs. (13 j-( 16) in this experimental arrangement. The results 
obtained will be the (constant) ionic fluxes as well as the concentrations and electric 
potential gradient profiles along the system. The membrane potential is readily 
computed by integrating the latter profile through the diffusion zone. According to 
this, we have an equation system with 2n equations and 2n variables. 

As is shown later, the algorithm allows for different choices of boundary 
conditions. The experimental situation here described suggests considering these 
conditions to be 

ci(o) = ciL 3 i = 1, 2, . . . . n 

ci(d) = CiR, i = 1, 2, . . . . n. 

'iL 
MEMBRANE 

LEFT RIGHT 

BULK BULK 

SOLUTION SOLUTION 

'iR 

(18) 

FIG. 1. Schematic representation of a constrained diffusion junction. ~‘,a denote the concentrations 
on the left of x = 0 and on the right of XF d, respectively. 
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NUMERICAL PROCEDURE 

In the case of multiionic systems, the number of variables to be handled demands 
a matrix notation. This choice simplifies the algebra to come. So, let us define a 
coiumn matrix (vector) Y whose elements yi are the variables of the problem 

J’j = Cj(X) i = 1, 2, . ..~ II, 

Y n+l+k=Jk k = 1, 2, . ..I H - 1. 

Note that as follows from Eq. (16), there are only YI - I independent ionic fluxes. 
Equations (13)-( 16) can be rewritten in terms of the JJ~S. Denote I?( = ~Q~~,/ds. Then, 
a set of equations y: =f( J!~, y2, . ..? .yZn) is readily achieved. We thus obtain--in 
matrix form-the equation 

k=l 

0 

where E, = zk/z,,D,,. Our goal is to solve the differential equation Y’ = F( Y), sub- 
stituting its elements by finite-difference expressions” According to this, we divide 
the diffusion zone (membrane) into M equal subintervals so that a grid of space 
points x1, x2, . . . . x*<+ 1 may then be defined. If we take the distance scaling factor to 
be &,=d, then x,=0 and xM+,= 1 (in reduced units), being h = t/M the thickness 
of each interval (see Fig. 2). 

The iterative procedure starts from a set of guessed values for variables I:,. So, an 
approximate profile of each variable along the diffusion zone is required. As a first 
approximation, a linear relationship between yi and x may be assumed, though in 
some physical problems this assumption bears no resemblance with the final 
solution. However, the stability of the method permits us to reach the desired 
convergence after several iterations. 

Once the initial guess Yco) . IS made, the iterative relationship 

ye+ 1) = y’(m) + j&4( ylm+ 1) _ ywq (211 



LEFT 

SOLUTION 

j = 

MAFk, PELLICER, AND AGUILELLA 

RIGHT 

SOLUTION 

FIG. 2. Typical space grid. The grid spacing h is constant, being h = l/M. The refinements in the 
space grid are not represented. 

applies, where superscripts denote the level of iteration. fl stands for the jacobian 
matrix whose ijth element is given by 

i, j = 1, 2, . ..) 2n. 

Let us write Eq. (21) for the values vector Y takes in the middle points of the space 
grid. Then - 

y~(m+l)=F(~)(“J+~!‘“)(Y~‘“+I)- yyq, 
J 

j= 1, 2, . ..) n, 

where 

j+) = ( y,!vJ + Y!“‘)/2. 
J J 

By substituting for ricrn) (in finite-difference form) into Eq. (23), we obtain 

f(Y.” (+;l)- yi(m+l)j=~(~jj(mj+~~mj(~~m+l)_ yj)n)), 

(23) 

(24) 

(25) 

where I is the identity matrix (2~2 x 2n). Bearing in mind Eq. (24) and rearranging 
Eq. (25) so that the calculated matrices at nz + 1 iteration are placed in the first 
term of the latter equation, Eq. (25) yields 
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Let us define matrices Pj and Qj and vector R, as 

z 1 
Q.=-+-$(N 

J h 2 J 

R, = f’( p)(d _ $jnl) F;W‘ 
I J 

Then, Eq. (26) reads 

Piy~m+:‘)-Qjyy:‘n+‘)=Rj. 

Multiplying Eq. (28) by -Q,- ‘, and defining 

(27) 

(281 

(29) 

we reach 

Equation (30) is written for each j-interval (j= 1,2, . . . . M). E.quations (18) con- 
stitute the set of boundary conditions most widely used in this sort of problem. 
However, in some cases other boundary conditions lit berter. Then our algorithm is 
not restricted to conditions (18). Usually, boundary conditions are taken to be a 
given set of physical parameters which are defined in the limits of the membrane 
phase (an experimental determination of any physical magnitude inside the mem- 
brane is hardly possible). So, in general, boundary conditions will be written in 
terms of Yj= , and Yj= .&[ + r (these vectors contain the values the 2n variables take 
at both extremes of the diffusion zone). In matrix form, boundary conditions are 
added by means of equation 

KoY(im+“+ KdYi;=;‘= G, (31) 

where K,, and K, are (2n x 2n)-matrices in agreement with the set of boundary 
conditions chosen. Vector G contains just the values these variables take at the 
diffusion zone extremes. In the present case and bearing in mind Eq. ( 18 ), Eq. (31) 
would be written 

1 0 0 0 ~,(Oj 0 0 0 0 
0 1 0 0 Ma 0 0 0 0 

. 0 0 0 0 
Ii 

f+?(O) 
II 

+ 1 0 0 0 
0 0 0 0 J,(O) 0 1 0 0 
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where n = 2 (binary system) has been considered. Obviously, Eq. (32) and Eq. (18) 
contain the same information. However, the great flexibility achieved by means of 
Eq. (3 1) is clear. In fact, a set of 2n different boundary conditions can be obtained 
just by appropriately modifying matrices K, and Kd and vector G. 

It is possible to rewrite the M Eqs. (30) and Eq. (3 1) as a unique matrix equation 
whose elements are also matrices. This leads to the equation 

Here, 0 represents a (2n x 2nj matrix with all elements zero. 

i 

I v, 0 
0 I P-2 
. . . 
0 . . 
0 . . 

K, 0 . 

. . 

. . 

. I .v, 

.o I 

. . 0 

0 
0 

-1 0 

VA4 

Ki 

y(m+l) 
I 

yP=+ 1) 
2 

yky-';' = 

I 

ye1 + 1) 
M 

y("z+lI 
MS-1 I 

(33) 

Among the different available methods for solving Eq. (33) we have chosen that 
of Cholesky [12]. This procedure works by factoring the coefficient matrix into a 
unitary upper triangular matrix and a lower triangular matrix. 

After a little algebra, the following iterative relationships for Yi (j= 1,2, . . . . M) 
and an expression for Y, can be reached 

q.= uj- yiyj,,, j= 1, 2, . . . . M, (34) 

Y IU+1= G-K,U,+ f 
j-2 

(35) 

First, we compute Y,, , . From Y,,, i, the Yis (j = M, M - 1, . . . . 1) can be readily 
calculated by using Eq. (34 j. 

Vector Y contains the solution of the problem (the 2n variables defined at each 
one of the M+ 1 space grid points). Once we have calculated the YJ’) 
(j= 1, 2, . . . . M+ l), this result is taken to be the initial value for the following 
iteration and the procedure is repeated until a previously fixed convergence is 
reached. 

In order to improve the accuracy of the computation, a refinement in the distance 
scaling is included at both extremes of the diffusion zone. Concentration and 
electric potential profiles may vary sharply in the vicinity of the boundaries. The 
procedure here employed envisages the two first intervals and the two last ones as a 
“new” diffusion zone where electrodiffusion equations should be solved according to 
boundary conditions slightly different from those originally considered (this is 
achieved by modifying appropriately matrices K, and Kd and vector G, for each 
refinement). The refinement procedure may be used several times in order to reach 
a satisfactory convergence. 
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IONIC TRANSPORT ACROSS A MEMBRANE SYSTEM 

So far, we have described a numerical algorithm for the solution of 
Eqs. ( 13)-( 16) in the case of a simple membrane [ 171. While the procedure permits 
a general solution of NP and Poisson equations, the most usual synthetic mem- 
branes exhibit some additional features. For instance, a nonzero charge density 
fixed to the membrane matrix should be considered. Equation (15) accounts for this 
charge density. On the other hand, allowance should be also made for the unstirred 
layers flanking the membrane. As a first (but excellent [9]) approximation, a 
Donnan equilibrium may be assumed at the membrane-solution interfaces (this 
implies the existence of concentration and electric potential “discontinuities” at 
these interfaces; see Fig. 3). 

Most of the procedures used to solve the problem of ionic transport are finite- 
difference methods or “shooting” methods. We can say that, in general terms. the 
former ones allow for a rougher initial estimate of the variables since “shooting” 
methods need a good initial guess of the variables to achieve convergence. 

The interest of the procedure here described is due to its wide applicability to 
different membraneesolution systems, in contrast with other methods speciaily 
designed for particular membrane transport problems [9, l&16] or liquid junction 
problems [17]. 

The main advantage of the present method is the great flexibility for introducing 
the boundary conditions. Actually, in other numerical methods [6, 9, If.51 there can 
Se no choice for the variables whose boundary values are given (usually, the ionic 
concentrations). 

On the other hand, though there exist other algorithms capable of solving the 
transport problem in simple membranes, to our knowledge there is no ~~~~~~.~a~ 

! LJNSTI 
i LAYE 
1 (1; 

LEFT : 
BULK / 

SClLUTION ; 

MEMBRANE 
VSTIRRED; 
,AYEE ; 

; RIGHT 
j BULK 
; SOLUTION 
I 

FIG. 3. Schematic diagram of the membrane system. A steady-state concentration profile for one ol 
the counter-ions is shown. Discontinuities are due to the Donnan equilibria [ 11. 
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procedure devoted to the description of ionic transport through both the membrane 
and the unstirred layers, for multiionic systems and under the general conditions 
stated here. 

In order to solve Eqs. (13)-( 16) in regions (I)-(III), we need a number of boun- 
dary conditions. Bulk concentrations ciL.R are assumed to be fixed, but external 
surface concentrations CiO,d and internal surface concentrations c,(O), cj(d) are 
unknown quantities. This problem shows one of the most interesting features of the 
algorithm, i.e., the flexibility in the choice of the boundary conditions. The latter 
ones may be introduced as “floating” boundary conditions, so that they can be 
improved even while the iterative procedure is working. 

Concentrations c,(O), ci(d) are computed from concentrations c~,,~, respectively, 
by solving Donnan equations at each interface. Assuming an ideal behavior for the 
membrane, Donnan relationships reduce to the following n + 1 equations 

i = 1, 2, . . . . n (36) 

f ziCi(0)+OX=O (37) 
i=l 

f: zjcio = 0. (38) 

Equations (13k( 16) should be solved taking into account the different values of 
the ionic diffusion coefficiens inside and outside the membrane. The thickness of the 
unstirred laters and the fixed-charge density are experimental parameters 
(obviously, x= 0 in the unstirred layers). The 2n boundary conditions employed in 
regions (I j-( III ) are 

left unstirred layer: 

ci(-&)=cjL, 

right unstirred layer: 

cj(d+ 6,) = CjR, 

g(d+d,)=o 

Ji(d+ 6,) = JJd), 

i = 1, 2, . . . . n 

i= 1, 2, . . . . n - 1; 

i = 1, 2, . . . . n 

i= 1, 2, . . . . II - 1; 

(39) 

(40) 
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membrane (results obtained from Eqs. (36))(38 )): 

Ci(O), Ci(4, i=l ? ) -, . . . . n. (41) 

The computing procedure is the following. First, we introduce the approximate 
values c,~ = ciL, cid= ciR, i = 1, 2, . . . . II, in Eqs. (36)-(38). This leads to concen- 
trations ~~(0) c;(d). Then, Eqs. (13))( 16) are solved in the membrane phase. The 
resulting values are improved in the surroundings of each interface by using the 
distance scale refinement. From the ionic fluxes across the membrane J!*J, 
estimate for the ionic fluxes through the membrane system as a whole Jif’ is 

a first 

where 0” is the diffusion coefficient of ion i in the unstirred layers. Equation (42) 
corrects the J{O’ by introducing the thickness of the unstirred layers as well as the 
diffusion coefficients inside and outside the membrane. The corrected fluxes are 
taken as boundary conditions for the solution of (13t( 16) in the unstirred layers 
(see Eqs. (39)). Then, we get some new cjO,d (these values are no longer equal to 
c~~,~). From the new c~*,~, Eqs. (36)(38) can be solved again. The resulting ci(@), 
ci(d) are employed in order to solve (13)-( 16) in the membrane, and a new estimate 
for the fluxes is obtained. By taking these new Jls as boundary conditions, the 
transport problem across the unstirred layers is solved again. The iterative 
procedure ends when a previously fixed convergence is reached. 

We first attempted to solve the Donnan relationships (see Eqs. (36)-(38)) by 
means of an iterative procedure but some difficulties arose in the convergence and 
we resorted to an analytical solution in the most common cases (binary and ternary 
systems j. 

The reason for introducing expression (42) was some unstability in the 
computing procedure due to a “very poor” guess of the ionic fluxes that made 
“negative concentrations” appear. 

When Df/Di, S,/d, and &/d take large values (a highly improbable situation in 
common experimental situations), care must be taken in appropriately selecting the 
initial guess of the variables. 

Five different sets of boundary conditions are employed in order to solve 
Eqs. (13)-(16) in the unstirred layes, the membrane, and the two interfacial zones 
where a distance scale refinement is considered. The final results are the concen- 
trations and electric potential gradient profiles across the three regions of Fhe 
system. 

RESULTS 

The reliability of the proposed method has been shown in two weal-knows 
experimental problems, namely the study of ionic transport through a concen- 
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FIG. 4. Concentration profiles of H+ (Na + ) ion through a weakly charged cation-exchange mem- 
brane. Two unstirred layers are flanking the membrane. Bulk concentrations are taken to be 
cr = 10ms mol/cm3 and ca = IO-“ mol/cm3, for both electrolytes. As a first approximation, we consider 
the ionic diffusion coefficients at infinite dilution. Other parameters are d=5 x IO-‘cm, 6, =Sa= 
5 x lo-’ cm and x= 10e5 mol/cm’: (a) convection i7= 0; (b) v‘= 10m3 cm/s. 
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V(x)/(RT/F) 
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FIG. 5. Electric potential profiles across a cation-exchange membrane under the same conditions 
stated in Figs. 4. The potential origin is taken to be & -6,) = 0. The discontinuities at both interfaces 
are the so-called “Donnan potentials” [ 11. Note the remarkable deviations from the classical assumption 
of “constant electric field” through the membrane. 

tration cell, and through an ion-exchange membrane under bi-ionic conditions 
[18]. As an example, we consider a problem here which poses a certain complexity 
due to the coexistence of a concentration gradient and a convective flux opposing 
the former one. In addition, we assume a charged membrane with two unstirred 
layers flanking it, so that these layers exert some control on the transport processes. 

Two electrolyte solutions at different concentrations are flanking this weakly 
charged membrane. The electrolyte system is NaCl-HCl-H,O. In Figs. 4a-b) the 
calculated counterion (Na + or H+) concentrations across the membrane are 
plotted. In the case (a), there is no convective flux, while in case (b) a nonzero 
convection is assumed. Other parameters like concentration gradients, ionic 
diffusion coefficients, etc. are taken to be the same in both cases. The changes in the 
concentration profiles are important, especially those appearing in both unstirred 
layers. This fact plays a remarkable role [18], and it had not previously 
considered, mainly due to the difficulties that an exact solution of the problem 
involves. 

Electric potential profiles are shown in Fig. 5. Discontinuities appearing at both 
interfaces are due to the Donnan potentials (a detailed description of the double 
layer at the interfaces has been omitted; it is well known [I, 193 that such a way of 
proceeding constitutes an approximation very close to reality in ion-exchange 
membranes j. The situation plotted is that of a nonzero convective flux. 
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All calculations were performed from a numerical code first developed in HPL 
language. The computer used was a Hewlett Packard 89825A. New versions coded 
in Fortran 77 (for a HP-9000/300) are also available. A space grid of 21 points on 
each one of the regions (I)-(III) was considered (61 points within the membrane 
when the refinement is taking place). 

A typical problem requires 4-5 iterations (on each one of regions (Ik(II1 j) in 
order to achieve the fixed convergence. In our problem, a relative change in any 
variable from one iteration to the next was required to be less than 0.01%. An 
average computation took 2-3 min. To evaluate the truncation error for the non- 
linear system seems to be beyond the scope of this treatment. Anyway, the accuracy 
of the grid system was tested by doubling the number of space grid points. 
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